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Multi-Center MRI Carotid Plaque Component
Segmentation Using Feature Normalization
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Abstract—Automated segmentation of plaque components in
carotid artery magnetic resonance imaging (MRI) is important
to enable large studies on plaque vulnerability, and for incorpo-
rating plaque composition as an imaging biomarker in clinical
practice. Especially supervised classification techniques, which
learn from labeled examples, have shown good performance.
However, a disadvantage of supervised methods is their reduced
performance on data different from the training data, for ex-
ample on images acquired with different scanners. Reducing the
amount of manual annotations required for each new dataset
will facilitate widespread implementation of supervised methods.
In this paper we segment carotid plaque components of clinical
interest (fibrous tissue, lipid tissue, calcification and intraplaque
hemorrhage) in a multi-center MRI study. We perform vox-
elwise tissue classification by traditional same-center training,
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and compare results with two approaches that use little or no
annotated same-center data. These approaches additionally use an
annotated set of different-center data. We evaluate 1) a nonlinear
feature normalization approach, and 2) two transfer-learning
algorithms that use same and different-center data with different
weights. Results showed that the best results were obtained for
a combination of feature normalization and transfer learning.
While for the other approaches significant differences in vox-
elwise or mean volume errors were found compared with the
reference same-center training, the proposed approach did not
yield significant differences from that reference. We conclude that
both extensive feature normalization and transfer learning can be
valuable for the development of supervised methods that perform
well on different types of datasets.

Index Terms—Atherosclerosis, carotid, classification, magnetic
resonance imaging (MRI), segmentation, transfer learning.

I. INTRODUCTION

R UPTURE of atherosclerotic plaques in the carotid artery
is one of the main causes of cerebrovascular ischemia

[1], [2]. The general consensus is that rupture-prone vulnerable
plaques are characterized by a thin or ruptured fibrous cap, a
large lipid-rich necrotic core (LRNC), presence of intraplaque
hemorrhage (IPH), active inflammation [3]–[5], and little cal-
cification [6]. In current clinical practice the decision to per-
form surgical treatment is, however, still based on the degree
of vessel narrowing as determined by noninvasive imaging [7],
[8]. It has been hypothesized that plaque composition can help
in assessing the risk of rupture and thereby will improve the se-
lection of patients for intervention [7], [9], [10].
Due to its superior soft-tissue contrast, magnetic resonance

imaging (MRI) is the preferred imaging modality to visualize
the different tissues in the atherosclerotic vessel wall [11],
[12]. The appearance of plaque tissues in different MR image
sequences has been well established with respect to histology
[13]–[15]. Moreover, plaque components as measured from
MRI have been related to future cerebrovascular events [5],
[16], [17].
Automated segmentation of plaque components would

greatly facilitate possible implementation of carotid MR
imaging in daily clinical practice. Several methods have been
proposed for this segmentation [18]–[21]. These are all su-
pervised classification methods that used a training set with
class labels obtained either from registered histology, or from
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manual annotations. All performed voxel classification using
MRI intensities, intensity gradients and wall distances as
features. Liu et al. [18] used Parzen window estimation in
a naive-Bayesian network and Hofman et al. [19] compared
different approaches of which a quadratic Bayesian classifier
performed best, while we [20], [21] used a linear discrimi-
nant classifier. These methods obtained reasonable to good
results, varying between components. However, a limitation
of such supervised methods is that they specifically assume
that training and target data follow the same distribution. This
raises problems when training and target data are different, for
example when the MR sequence protocol changes, a scanner is
replaced, or in multi-center studies. In these situations images
typically have different contrast characteristics. The purpose
of this study is to develop methods that facilitate the applica-
tion of supervised learning methods to new or unseen data,
by acquiring no or only few annotations on the new dataset.
Methods like this will facilitate widespread implementation of
supervised methods in medical imaging.
Some approaches to overcome this problem have been inves-

tigated. Fischl et al. [22] incorporated physics of the MRI acqui-
sition into a brain tissue segmentation algorithm. Theoretically,
with knowledge of intrinsic tissue properties (T1 and T2 relax-
ation time, and tissue proton density), tissue appearance can be
modelled given anyMR settings. However, these intrinsic prop-
erties are often unknown. Another approach involves image nor-
malization. Normalization by matching the mean and variance
of the image intensities or by matching two percentiles from the
intensity histogram is commonly used, however, mainly for dif-
ferent imaging sessions on the same scanner (among others in
[21]). More elaborate normalization methods have been used to
handle differences between scanners or protocols. For example
by matching more percentiles from the MRI intensity histogram
[23] resulted in better performance of brain tissue segmentation
when training and test data came from different MRI contrasts
[24]. Artan et al. [25] applied a classifier trained on data from
one device to data from a different device using iterative classifi-
cation and intensity rescaling of the target data. For chest radio-
graphs and chest computed tomography (CT), normalization of
scans acquired with different settings by splitting and weighting
different frequency bands, has shown to improve segmentation
performance [26], [27]. These methods all normalize the entire
image. In our application we are only interested in a relatively
small part of the image, the carotid vessel wall. In the normal-
ization methods mentioned above other structures in the image
may have a large effect on normalization. Therefore, instead of
normalizing the images, we present a way of feature normal-
ization that is able to handle nonlinear scaling of feature spaces
from different sources.
Transfer learning [28] is an approach that is still relatively

new to the field of medical image analysis. Transfer learning
comprises machine-learning methods designed to better handle
differences in distributions, labeling functions, and/or features
between training and test data. These methods use training data
with different properties (called source data), and in some cases
a small set of labeled data that has the same properties as the
data to analyze (called target data). For example, on nonmed-
ical data Wu et al. [29] used a weighted support vector ma-

chine (SVM) and a weighted k-nearest-neighbour (kNN) classi-
fier in which source and target samples are weighted differently.
Ablavsky et al. [30] present an approach for the segmentation
of microscopy images, where an SVM classifier trained on a
small set of labeled target data was regularized using an SVM
trained on a larger set of source data. For brain tissue segmen-
tation, Van Opbroek et al. [31] proposed a reweighting SVM
where iteratively a weighted SVM classifier was calculated and
the weights of misclassified source samples were reduced. This
was done in order to reduce the influence of source samples
that contradict the rest of the data, while maintaining both target
samples and informative source samples. These examples have
shown the advantage of transfer-learning methodologies when
little training data from the target data type is available.
In this study we aim to develop methods for plaque-compo-

nent segmentation on multi-center MRI data that has been ac-
quired on MRI scanners from different vendors, and with sig-
nificant differences in MRI pulse sequence implementation. In
contrast to traditional supervised learning as described in [20],
[21], [32], we investigate strategies to improve the performance
of supervised methods to segment data with different properties
than the training data, i.e., from different centers. We evaluate
1) the performance of voxel classification when training and test
data come from the same center as well as from different cen-
ters (the traditional reference methods), 2) the performance of
transfer learning, where we train on a small number of labeled
samples from the target data and a large set of annotated source
data, and 3) the effect of extensive feature normalization to im-
prove the performance of cross-center analysis.

II. METHODS

An overview of themethods and experimental set up is shown
in Fig. 1. In Section II-A we first discuss the general approach
used for reference. The incremental changes to improve wider
implementation of such methods on different data is discussed
in Sections II-B and II-C.

A. General Segmentation Methodology
We used a voxel classification approach to segment tissue

components. In such a supervised approach a number of charac-
teristics (features) are computed for each voxel. A model is then
built on a training set to assign each voxel to one of the classes.
Applying this model to features computed for each voxel in a
test dataset results in a segmentation in which each voxel re-
ceives one class label. In our experiments we selected all voxels
for training and testing from the manually segmented vessel
wall.
Before computing features a few preprocessing steps were

applied to the images. The scans acquired in center 2 showed
a considerable intensity bias field due to coil inhomogeneity
(Fig. 2). This was corrected for in all five sequences by N4
inhomogeneity correction [33]. The images from center 1 did
not show any coil inhomogeneity in the images, so N4 was not
applied to the images from this center. Images from both cen-
ters were normalized in order to obtain similar intensity ranges
between subjects. Here a region of interest (ROI) of 4 4 cm
around the lumen center was identified in each image slice. The
5th% of the intensity histogram in the 3D ROI per image was
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Fig. 1. Flowchart of the proposed methods. After preprocessing, optionally the proposed feature scaling approach is applied, and four approaches are presented:
the reference methods same-center training and different-center training, and the two proposed transfer-learning methods.

Fig. 2. Examples of registered MR images from both centers. Center 1: A calcium spot (*) appears hypointense on all sequences. A region of IPH (black dot) is
hyperintense on the IR-TFE sequence, TOF-FFE, and T1w precontrast, and shows no signal enhancement on the postcontrast T1w image. Center 2: a hyperintense
region on the SPGR and T1w precontrast scan indicates IPH (black dot), and is hypointense on the T1w postcontrast scan. Two hypointense regions of calcification
(*) are visible in especially the FSPGR and SPGR scans.

set to 0 and the intensity of all voxels was linearly scaled such
that the 95th% of the histogram was set to 1000, for each scan
individually. We assume this ROI was large enough to exclude
any influence from plaque composition to the 5% and 95% his-
togram values.
Similar to [21], the computed features consisted of 1) image

intensities of all MRI sequences, since image intensity is the
first main characteristic that differentiates tissue classes, 2) the
images blurred with a Gaussian filter [ mm ( voxel
in the data from center 1)] to reduce noise and increase spatial
smoothness, 3) the gradient magnitude and Laplacian after blur-
ring at that same scale, as a measure of tissue structure and for
detection of small structures, and 4) the Euclidean distances to
the lumen and outer vessel wall (mm), and the product of these
two distances, to include spatial location within the plaques as
a feature. This resulted in a total of 23 features. We used four
classes: fibrous tissue (FT), LRNC, CA, and IPH. All classifier
training and evaluation was performed using Matlab (Release

2011b, MathWorks, Inc., Natick, MA, USA) and the prtools
toolbox [34].
As the classification model, linear discriminant classification

(LDC) was chosen for all experiments, since this classifier has
proven to be successful for atherosclerotic plaque segmentation
previously [20], [21], [32]. With LDC the density of each tissue
class is modelled by a normal distribution with equal covariance
for all classes, by calculating the mean and covariance of previ-
ously calculated features on a training set. The logarithm of the
class conditional density for class is defined as follows by
LDC [35]:

(1)

Here is the feature vector to classify, the covariance matrix
that is pooled over the classes, are the class means, and
the class prior probabilities. For classification, each sample is
assigned to the class with the highest class conditional density
.
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B. Adaptive Histogram Binning
We propose this feature normalization step to account for

nonlinear differences in intensity scaling between imaging pro-
tocols. We used all voxels from the vessel walls from all patients
scanned with the same imaging protocol. An adaptive histogram
binning using piece-wise linear rescaling was then applied to
each feature independently. Each percentile of samples (voxels)
was linearly scaled over one out of 100 equal bins from 0 to
1000. Here we assumed that the data from each center had sim-
ilar patient characteristics, and hence a similar fraction of FT,
CA, LRNC, and IPH voxels was present in the entire dataset
from each center. Additionally, for each feature the ordering of
tissue components in the imaging protocols was assumed to be
the same, while the contrast between tissues may vary between
imaging protocols. This procedure performs histogram equal-
ization and also affects the distribution of samples in the feature
space as regions in the original histograms with high density are
stretched out over more bins.

C. Transfer Learning
We propose two forms of transfer learning for use with LDC,

inspired by the sample weighting transfer-learning approaches
of Wu et al. [29] and Van Opbroek et al. [31]. For both ap-
proaches the training data was composed of 1) a large labeled
dataset acquired in a different center than the data we aim to seg-
ment (called the different-center data), and 2) a small number

of labeled samples from data acquired in the center for
which we aim to segment the data (called same-center data). The
labeled samples can for example be obtained by manually indi-
cating a few locations of the different tissue types, or by manu-
ally segmenting a number of slices. We propose weighted-LDC
and reweighted-LDC, which both use LDC as provided in (1).
In both methods individual samples get different weights, based
on their representativeness of the test data. Sample weighting al-
lows tuning the contribution of individual samples to a classifier,
and therefore seems an appropriate approach when training data
from different sources is used. In case of LDC, this weighting
affects the classifier by weighting the estimated class means
and the pooled covariance matrix

(2)

(3)

with the label, and the weight of sample .
With weighted-LDC, we aim to balance the contribution of

the large amount of different-center data, and the smaller, but
more representative, amount of same-center data to the clas-
sifier. To achieve this, samples from the two sources receive
different weights. We set the total sum of the sample weights
of the different-center data and the sum of the sample
weights of the same-center data , while all samples from
the same center had the sameweight. In our experiments we kept

fixed at 1, and varied .

With reweighted-LDC, we assume that part of the different-
center data may be more representative of the same-center data
than the rest. The sample density for each class may be sim-
ilar for different- and same-center data in some areas of the fea-
ture space, but not for other parts. Therefore, we aim to give
a larger weight to the representative different-center samples
that provide relevant information, and a lower weight to dif-
ferent-center samples in areas with low same-center density. We
first applied weighted-LDC according to (1)–(3) to estimate the
density of the classes based on all data. After this step, for each
different-data sample was determined for its label , and
used as new sample weight. Per class the weights of all sam-
ples were linearly rescaled such that their sum equalled the ini-
tial total weight of that class. So, also the ratio between
and remained the same as for weighted-LDC, only the
weights of the different-center data varied between samples

(4)

Here was determined based on the different-center data
only. For reweighted-LDC the classifier was retrained using
the updated weights . This way the different-center sample
weights are linearly scaled with their corresponding initial class
densities.

III. EXPERIMENTAL SET-UP

A. Image Data
We used image data acquired within themulti-center PARISK

study [36]. This is a large prospective multi-center imaging
study to improve risk stratification in patients with mild to
moderate carotid atherosclerosis. Inclusion criteria were a
recent ( months) transient ischemic attack (TIA), amaurosis
fugax or minor stroke, and a symptomatic carotid artery plaque
of at least 2–3 mm with a stenosis % as determined on
Doppler ultrasound or CT angiography. All patients underwent
MRI imaging of the carotid artery. For the present study we
selected the first 20 patients from the Maastricht University
Medical Center (center 1) and the first 22 patients from the
Erasmus Medical Center (center 2), for whom a complete
MRI session was available. MR imaging was performed on
3.0-T whole-body scanners. Center 1 used an Achieva TX
scanner (Philips Healthcare, Best, The Netherlands) with an
eight-channel phased-array coil (Shanghai Chenguang Medical
Technologies Co., Shanghai, China). Center 2 used the Dis-
covery MR 750 system (GE Healthcare, Milwaukee, MI, USA)
with a four-channel phased-array coil with an angulated setup
(Machnet B.V., Roden, The Netherlands).
The MRI protocol has been described previously [36], and is

summarized in Table I. The main differences between the two
centers, apart from the differences in scanner model and coil,
are the voxel sizes (both acquired and reconstructed), the use of
a T1w IR-TFE (center 1) versus a SPGR scan (center 2) to vi-
sualize IPH, and a TOF FFE (center 1) versus a FSPGR (center
2) scan. This FSPGR sequence has been designed specifically to
visualize calcification in a single image sequence, making it pos-
sible to visually or automatically detect calcification without the
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TABLE I
MRI SCAN PARAMETERS

need to combine information frommultiple sequences. The TOF
scan can identify hypointense regions near the lumen border as
calcifications, while they may be considered as lumen on the
black-blood sequences. For center 1 for all sequences 15 axial
slices were acquired; for center 2 the SPGR and FSPGR images
were acquired in the coronal direction. Examples images from
both centers are provided in Fig. 2.

B. Manual Reference

Manual contours of the symptomatic artery in each image
were obtained for training and validation of the automatic
methods. For center 1, the 20 scans were annotated by two
observers with three years of experience with carotid MRI,
using vessel wall analysis software (MRI-Plaque View, VP-
Diagnostics Inc., Seattle, WA, USA). First the images were
semi-automatically aligned by registering the four other im-
ages to the T1w precontrast scan using the built-in tool for
in-plane rigid registration [18]. This registration was manually
adjusted for errors. Subsequently, lumen and outer vessel wall
were semi-automatically segmented using active contours
[37], requiring one lumen seed point, and manually adjusted.
Plaque components (CA, LRNC, and IPH) were fully manually
delineated, based on previously determined criteria [38]–[40]
as agreed on by both observers on beforehand. IPH was defined
as a hyperintense area in the IR-TFE scan, LRNC as a region
that shows no contrast enhancement on the postcontrast T1w
scan and is iso- or hyperintense on the precontrast T1w scan,
and CA as hypointense on at least three image sequences. The
remaining tissue within the vessel wall was considered as FT.
All slices for which the five image sequences were available
after co-registration, were annotated. One patient was excluded
due to excessive patient movement.
As we used VesselMass (Department of Radiology, Leiden

University Medical Center, Leiden, The Netherlands) for fur-
ther analysis, editing and visualization, the annotated contours
were converted into a format for use in VesselMass. Contour co-
ordinates on the fixed T1w image could be extracted from the
PlaqueView contours, and rigid registration [41] with manual
adjustments was repeated in VesselMass until the alignment of
contours with images was determined to be correct by one of the
observers. Due to significant inter-observer variability for this
center, a consensus contour set was created by five experienced
observers including the first two observers, with knowledge of
the two initial segmentations, but without knowledge of any au-
tomatic segmentation results that were obtained using the first

two contour sets. For this dataset segmentation and registration
was approved by all observers.
The 22 scans from center 2 were manually annotated by one

observer with three years of experience, using VesselMass. A
subset of 10 scans was annotated by a second observer with
one year of experience. First, the lumen was manually anno-
tated on the T1w precontrast scan. Subsequently the remaining
four image sequences were automatically registered to the T1w
precontrast scan using a previously described algorithm for 3D
rigid registration [41]. All contours (lumen, outer wall, CA,
LRNC, and IPH) were fully manually drawn. Similar to center
1, LRNC was defined as a hypointense area on the postcon-
trast T1w scan that is iso- or hyperintense on the precontrast
T1w scan. IPH was defined as a hyperintense region on the
SPGR scan. The criterium for CA segmentation was different
from center 1: all hypointense regions in the FSPGR sequence
were defined as calcium, without taking information from the
other image sequences into account. In addition, areas with hy-
pointensity in two or more of the other sequences without hy-
pointensity in the FSPGR sequence were annotated as calcium if
this was thought to be related to misregistration of the FSPGR
volume. For both centers, by definition, all IPH lesions were
drawn within a region of LRNC. However, for our experiments
LRNC and IPH were considered mutually exclusive, so the IPH
regions were not considered as LRNC as well for classification.

C. Experiments
Five different training approaches for voxel classification

were evaluated. For all approaches for center 1, the consensus
contours were used for training and evaluation. For center 2 we
used the contours of the observer who annotated all 22 datasets.

I Same-center training: Methods were trained and eval-
uated on data from the same center, and thus acquired
using the same hardware and imaging protocol. For both
centers we performed leave-one-subject-out cross-valida-
tion. This uses the same approach as published state-of-
the-art methods [20], [21] in terms of classifier, features
and training, and is therefore used as the reference method.
II Different-center training: Here a classifier developed on
all vessels from center 1 was applied to segment the data
from center 2, and vice versa, without the use of any la-
beled same-center samples during training. This resembles
the situation in which one would apply the same-center
classifier to previously unseen data. In this study this rep-
resents the reference for the situation in which no fully an-
notated same-center dataset is available.
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III–IV Weighted and reweighted transfer learning: We
simulated the situation in which a few slices from a larger
set of same-center data are selected and manually seg-
mented. This is practically feasible, and allows the use of
transfer-learning methods to tune the segmentation algo-
rithm for use on the same-center data while most of the
training data originates from the different-center dataset.
In order to do this we selected a number of slices from
both datasets that were considered suitable for training in
such a setting. The selection criterium was presence of at
least one of the three components CA, LRNC and IPH
with a size of at least 10 voxels. This led to a selection of
118 out of the 285 slices for center 1 and 128 out of 359
slices for center 2. Experiments were performed with a
random selection of 1, 3, 5, and 10 slices of same-center
data, where those slices together contained at least 10
voxels of all components. Those slices were randomly
selected from the other vessels from the target data in a
leave-one-patient-out fashion. For each slice set selection,
weighted- and reweighted-LDC were performed with five
different settings of weighting between different-center
and same-center data. was set to 0.1, 0.2, 1, 5, and
10, while was always 1. The prior probabilities for
the classes were set to the prior obtained from the
fully annotated different-center dataset in all experiments.
These experiments were repeated 100 times, to account
for the variability between slice set selections. In each
of the 100 iterations all vessels from the target data were
segmented once.
V Training on x same-center slices. For comparison we
also performed segmentation by training on the 1, 3, 5,
or 10 selected same-center slices only, without adding
different-center data. This was done for all 100 repeti-
tions. Similar to the transfer-learning experiments, the
prior probabilities were obtained from the different-center
dataset for a more accurate comparison.

D. Evaluation
Segmentation results were evaluated by 1) two-way intraclass

correlation coefficients (ICC) for the volume of FT, CA, LRNC,
and IPH per vessel, 2) the error per component: the absolute
difference between the amount of that component in the ground
truth and the segmentation result per vessel, 3) accuracy as % of
correctly classified voxels, and 4) confusionmatrices. All exper-
iments were performed both with and without feature normal-
ization by adaptive histogram binning, to also assess the effect
of adaptive histogram binning on same-center training. In the
transfer-learning experiments with a limited number of same-
center slices, the entire set of same-center data was used to de-
termine the histogram bins and normalization of the individual
slices was performed using these parameters. Results were com-
pared with the inter-observer variability as determined between
the two observers and the consensus reading for center 1, and be-
tween the two observers for center 2. For a more fair comparison
of the automatic segmentation results with the inter-observer
variability, the contours of the observers were evaluated within
the consensus contours for the vessel wall for center 1, and for
center 2 the contours of observer 2 were evaluated within the

vessel wall contours of observer 1. Only voxels annotatedwithin
this wall were considered, and voxels not annotated within this
wall were considered to be fibrous tissue. This is similar to how
the automatic segmentation works, which also takes the refer-
ence vessel wall as an input.
Statistical comparisons were made between 1) same-center

training, 2) different-center training, 3) different-center training
with adaptive histogram binning, 4) training on a few same-
center slices, 5) transfer learning, and 6) transfer learning with
adaptive histogram binning. We compared the mean error of the
four components, and the voxelwise accuracy per vessel. The
analysis was done for the two centers combined, for the setting
where 5 labeled same-center slices are available. For transfer
learning we selected the method (weighted- or reweighted LDC
and ) that overall performed best. For this method for each
patient we took the median error and voxelwise accuracy for
each vessel over the 100 repeated experiments to use in the sta-
tistical analysis. Comparisons were made by Friedman analysis,
followed by Tukey-Kramer testing for individual differences
taking multiple comparisons into account. A p-value was
considered significant.

IV. RESULTS

In this section, we will first present the results obtained by
the reference method [21], both for same-center (Section IV-A)
and different-center (Section IV-B) training and thereafter the
results using transfer learning (Section IV-C). All results are
presented with and without feature normalization by adaptive
histogram binning. An overview of all results on all 41 subjects
of the two centers combined is provided in Table III. A subset of
the results is provided for the two centers separately (Table IV).

A. Same-Center Training

Correlations of tissue component volumes per vessel for the
two centers combined, using same-center training without adap-
tive histogram binning are provided in the top row of Table III.
Good ICC values were obtained for FT, CA, and IPH. A lower
correlation was found for LRNC. Table IV indicates that a good
correlation for LRNC was obtained for the data from center 1,
but a considerable underestimation with low correlation was ob-
tained for center 2. A confusionmatrix of both centers combined
is provided in Table II(a) to assess voxelwise agreement. This
shows a low sensitivity for LRNC (15%) and a moderate sensi-
tivity for CA (43%) which both were often misclassified as FT.
A good sensitivity for IPH (73%) and a high sensitivity for FT
(97%) were found.
Further results (volume errors, ICC values, and accuracy)

for same-center training are summarized in Tables III (centers
combined) and IV (two centers separately). The accuracy of
the automated same-center methods was similar to the inter-
observer agreement for both centers (Table IV). However, for
center 2 the errors were slightly larger than the differences be-
tween observers.
The results for training on 5 same-center slices only are also

provided in Table III. The obtained volume errors were similar
to same-center training on the full dataset. However, a lower
ICC for CA and IPH was obtained, and the voxelwise accuracy
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TABLE II
CONFUSION MATRICES SHOWING AGREEMENT BETWEEN THE GROUND
TRUTH AND SEGMENTATION RESULTS. EACH VALUES IS GIVEN AS A

PERCENTAGE OF THE TOTAL AMOUNT OF VOXELS INCLUDED. SENSITIVITY IS
PROVIDED FOR EACH COMPONENT AS WELL. (A) SAME-CENTER TRAINING,
(B) DIFFERENT-CENTER TRAINING, (C) DIFFERENT-CENTER TRAINING AND
ADAPTIVE HISTOGRAM BINNING, (D) PROPOSED TRANSFER-LEARNING
APPROACH: WEIGHTED-LDC WITH AND ADAPTIVE

HISTOGRAM BINNING. FOR (D) THE MEAN OF 100 REPETITIONS IS TAKEN.
ADAPTIVE HISTOGRAM BINNING

(median 88%) was significantly lower than for reference same-
center training (median 91%).

B. Different-Center Training

Training on only different-center data resulted in an extreme
overclassification of FT as CA, resulting in large errors for
FT and CA (Tables III and IV). This can also be seen from
the confusion matrix in Table II(b) and was mainly due to a
large overclassification of FT as CA for center 1. This can be
explained since the FSPGR scan from center 2 has low inten-
sity for calcification only, while the corresponding TOF from
center 2 shows low intensity in almost the entire vessel wall.
The errors were much lower when adaptive histogram binning
was applied. The confusion matrix in Table II(c) shows that a
slight overclassification of CA remains, but a large improve-
ment with respect to Table II(b) is seen. Statistical analysis
of the combined errors and voxelwise accuracy showed that
different-center training without adaptive histogram binning
had significantly larger volume errors and lower accuracy than
same-center training. Despite the large improvement obtained
by adaptive histogram binning, the error and accuracy remained
significantly different from same-center training.

C. Transfer Learning
Results for the transfer-learning experiments, for the two cen-

ters combined, are summarized in Fig. 3. It can be seen that
using most approaches, and having at least three same-center
slices, reasonable volume errors were obtained. The effect of the
number of slices, and the weight given to the same-center data
differs between approaches. For weighted-LDC, these param-
eters did not have a large influence on the volume errors. ICC
values weremore sensitive to the same-center weight, especially
after adaptive histogram binning. Here giving little weight to the
same-center data yielded the most accurate results, suggesting
that not enough same-center data is available to let it contribute
equal to or more than the large amount of different-center data.
This is supported by the fact that ICC decreases faster when less
same-center slices are used.
With reweighted-LDC, the lowest errors were obtained

when same- and different-center data were given the same
weight. Reweighted-LDC was also more strongly dependent
on the amount of same-center data available. This indicates
that for reweighting it is more important to have enough
same-center data to accurately model the data and to adjust the
different-center sample weights accordingly.
Based on these findings, in Table III the results are specified

per component for weighted-LDC with , and
reweighted-LDC with , both with and without adap-
tive histogram binning. After considering volume error, ICC
and accuracy together, we decided to focus on weighted-LDC
with and adaptive histogram binning for fur-
ther analysis. The corresponding confusion matrix is given
in Table II(d) and shows results very similar to same-center
training. When looking at the centers individually in Table IV,
the improvement over different-center AHB is clear for the
accuracy in center 1. For center 2 the differences are smaller.
In the statistical analysis we included weighted-LDC with

, both with and without adaptive histogram bin-
ning. The mean volume error (mm ) of both transfer-learning
approaches, but also of training on five same-center slices
only as mentioned above, was not significantly different from
full same-center training. This error was significantly larger
when a conventional classifier was trained on different-center
data, either with or without adaptive histogram binning. More
importantly, only the voxelwise accuracy of transfer learning
and adaptive histogram binning combined was not significantly
lower than for same-center training. The accuracy of transfer
learning with adaptive histogram binning was also significantly
better than transfer learning without adaptive histogram bin-
ning, than training on five same-center slices, and than training
on different-center data only.

D. Visualization of Results
Segmentations for three slices from both centers are shown

in Fig. 4. The results for transfer learning were obtained using
five same-center slices, adaptive histogram binning on the fea-
tures and weighted-LDC with . Of the 100 repeated
experiments with random selection of five target slices, for each
vessel we used the selection for which the total error over the
four components was closest to the median total error of the
100 experiments for the examples shown. The segmentations
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TABLE III
AUTOMATED SEGMENTATION RESULTS INCLUDING ALL 41 PATIENTS

TABLE IV
SEGMENTATION RESULTS PER CENTER

show that same-center training sometimes yields the smoothest
results (columns 1, 2, and 5 eg.). The transfer-learning segmen-
tations have a slightly better detection of CA (column 4) and
IPH (column 1) than different-center training in some of the
examples.

V. DISCUSSION AND CONCLUSION
In this work we performed carotid plaque-component seg-

mentation in a two-center MRI study. Whereas traditional
supervised approaches would use a considerable amount of
training data from each center, we developed two approaches
that were shown to improve segmentation accuracy when only
few annotations from the dataset to segment are available.
To achieve this, a much larger annotated dataset with slightly
different feature distributions is used, in our case from the other
center. Our results showed that using extensive feature normal-
ization by adaptive histogram binning, and transfer-learning
algorithms, performed significantly better than applying a
method trained on different-center data. Moreover, these results

were not significantly different from training on the complete
set of manually annotated same-center data. For both centers
these obtained segmentations showed a similar agreement with
manual annotations as the inter-observer agreement.
Applying a reference classifier optimized using training data

from one center directly to image data from the other center
yielded large errors. The largest errors were obtained for CA,
which can mainly be explained by the differences in image ac-
quisition for this component. In center 2, hypointense regions
within the furthermore isointense vessel wall in the FSPGR scan
were annotated as CA, while for center 1 the corresponding
TOF-FFE has an overall hypointense vessel wall, resulting in
large CA overestimation when using the classifier developed
for center 2. Appearance of IPH and LRNC was more sim-
ilar between centers and raised fewer problems. Training on
only five same-center slices was not significantly different from
same-center training or transfer learning when considering the
mean volume error of the components, but the voxelwise ac-
curacy was significantly lower. It should also be noted that the
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Fig. 3. Mean error (mean of median per component) and ICC when only a limited amount of same-center training data is available. For each set of five transfer
learning experiments from left to right is 0.1, 0.2, 1, 5, 10. histogram binning. Bars and dots for “x slices” are the result for training on
the labeled same-center slices only.

class prior probabilities here were also determined on the dif-
ferent-center data, as the presence of CA, LRNC, and IPHwould
be overestimated based on the selected slices.
The first method proposed in this paper is piecewise-linear

feature normalization by adaptive histogram binning. Nor-
malizing both same- and different-center data by this method
yielded a large improvement of segmentations over direct
different-center training. This approach was chosen to over-
come nonlinear differences in the probability density of
features between the two datasets. It is similar to the histogram
matching of Nyúl et al. [23] for brain tissue segmentation.
They perform histogram matching per image and only for the
intensity, whereas we normalize all features, for all subjects
per center combined. We chose to combine subjects because
the tissue distribution in the vessel wall differs more between
patients than the tissue distribution of the brain. For example
not all classes are present in each of the images. Additionally,
a different approach would be to map the percentiles of the
features from one center to match the corresponding percentiles
obtained from the other center. This has a smaller influence on
the density distribution of the feature histograms, but yielded
larger errors in a pilot experiment on a small subset of the data
than the histogram equalization approach that we propose.
The second proposed method, a transfer-learning clas-

sifier with sample weighting, improved accuracy over dif-
ferent-center training, by only obtaining labels for a small
number of slices (1–10). Several approaches for transfer
learning have been described, of which sample weighting and
feature selection and/or transformation are the most common
[28]. Sample weighting is an appropriate method to handle
a nonlinear change in the distribution of features over the
feature space. Adaptive histogram binning can partly solve
this, but not completely. Reweighted-LDC can also partly
handle differences in the (manual) labeling procedure, for
example when different features are used to segment a certain
class. It can then reduce the weight of different-center samples

that do not correspond to the combined distribution of same-
and different-center samples. Feature selection, or learning a
low-dimensional representation of features that are similar be-
tween centers, is another common transfer-learning approach.
However, in our case the features that differ most between
centers are essential for accurate classification of all classes,
and such an approach would increase the risk of obtaining low
accuracy for those classes.
There are certain requirements to the data for both adaptive

histogram binning and transfer learning to be successful. One
requirement to successfully use adaptive histogram binning is
that a representative set of data needs to be available for both
centers, such that the distribution of disease stage and therefore
prior class probabilities is similar. For both adaptive histogram
binning and the used transfer-learning algorithms it is important
that there is a direct link between each feature in one dataset with
one of the features in the other dataset, with the same ordering
of classes. In the multi-center study that we used, the MRI pro-
tocol was designed to be comparable between the two centers;
differences occurred only due to use of a different scanner and
institutional preferences. If no obvious link is present, either
only the sequences that are comparable in both datasets can
be used, or measures of histogram similarity such as the Kull-
back-Leibler divergence could be used to determine which se-
quences are most similar in appearance [42]. The assumption
that the classes had the same ordering did not fully hold for the
TOF-FFE/FSPGR sequence, since IPH had the highest inten-
sity in the FSPGR scan, but the second-highest (after FT) in
the TOF-FFE scan. However, if sufficient weight is given to the
same-center data, such features will contribute less to the classi-
fier, which aims to optimize the discrimination between classes.
The performance of transfer learning depends on the selected

slices, which need to be representative of all classes in the target
data. As a selection criterium we used a minimum of 10 voxels
for each class for the total set of selected slices, where each
slice has at least one component with at least 10 voxels besides
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Fig. 4. Segmentation results for slices selected from three patients from center 1 and three patients from center 2. Results for transfer learning were obtained using
five selected target slices and both adaptive histogram binning and weighted-LDC with .

FT. In practice this is not expected to raise problems, as slices
with large areas of CA, LRNC or IPH can easily be recognized
by human observers. The number of same-center training sam-
ples in the smallest class was significantly correlated with the
average error for both centers and all transfer-learning experi-
ments combined . The suitability of
adaptive histogram binning and the used sample (re)weighting
algorithms depends on which classifier is used. LDC is optimal
if all classes follow a Gaussian distribution with equal covari-
ance, which cannot be assumed after the performed histogram
stretching. In this study adaptive histogram binning did not neg-
atively affect our results for same-center training, except for IPH
segmentation in center 1. Concerning the sample (re)weighting,
almost all classifiers can deal with sample weighting, however,

our reweighting procedure was more tuned to density-based
classifiers. For other classifiers, such as SVM, different criteria
for reweighting have been used [31] whichmay bemore suitable
for that specific classifier. For instance, in [31] misclassified dif-
ferent-data samples received a lower weight.With SVM outliers
that are classified correctly have little effect. In LDC, however,
these outliers have a large effect on class means and covariance,
which is why we decided to lower the weight of those samples.
A combination of adaptive histogram binning and transfer

learning performed best, and yielded good results for both cen-
ters. Overall, weighted-LDC with adaptive histogram binning
and performed best and its results did not differ
significantly from same-center training. However, the best per-
forming algorithm differed between the two centers. Instead of
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using the same transfer-learning approach on every dataset, it
may be useful to re-evaluate what method and settings work best
on new data. If the proposed approach of weighted-LDC with
a relatively low weight on the same-center data yields visually
unsatisfactory results, a different weighting-ratio can be consid-
ered. Based on our results reweighting seems most appropriate
when a considerable amount of same-center annotations can be
obtained. The optimum weights vary based on how representa-
tive the different-center data is of the same-center data.
In our data there was a slight difference in prior probabilities

for the tissue components between the two centers, which could
have influenced the classifiers based on adaptive histogram bin-
ning, and different-center training. More CA (8% versus 4%)
and IPH (5% versus 3%) was manually segmented for center
2. This could be due to a difference in patient population and
vessel wall composition in the included patients, but likely also
results from differences in the imaging protocol. Although this
has not been studied in detail, it seems the FSPGR sequence to
image CA in center 2 leads to an overestimation of CA, similar
to the blooming effect that is seen in CT. Use of this dedicated
sequence to image CA did on the other hand yield larger ICC
values for CA than the traditional MR protocol used in center 1.
This difference in prior probabilities could also have contributed
to the overestimation of CA in center 1 when trained on center
2. However, prior probabilities from the different-center data
were used in the transfer-learning experiments as well, where
no overestimation of CA was seen. It is therefore likely that dif-
ferences in the imaging protocol contribute more to the large
overestimation of CA in Table II(b) than the difference in prior.
The features used for classification in this study yielded good

results on data from both sites, as well as in previous studies
using data with a slightly different imaging protocol [20], [21].
This indicates that these features are appropriate, both for tradi-
tional supervised classifiers, and on slightly different previously
unseen data, when using the methods proposed in this paper.
Compared to previous literature on plaque-component seg-

mentation, our same-center segmentation and the proposed
combination of transfer learning and adaptive histogram bin-
ning, have similar [18] or slightly better [19]–[21] accuracy
than previously published results on same-center training and
evaluation. Our results imply that such methods can more
easily be implemented in multi-center studies, although stan-
dardization of image protocols remains advantageous. Our
results also had a similar agreement with the ground truth
manual annotations as the inter-observer agreement for both
centers. This suggests that these segmentations could replace
manual annotation in large research studies, for example to
study the relation between composition and prognostic outcome
parameters such as plaque progression and cerebrovascular
events. In previous studies such relations have been found for
presence of IPH and LRNC [5], [17] in MRI, and CA [6] in CT.
Automatic segmentation would allow studying vulnerability
based on component volumes, which may be more sensitive
than presence versus absence. Moreover, use in clinical practice
would be feasible with similar accuracy as manual annotation.
Although this study was performed on the carotid artery, sim-
ilar results can be expected when applied to MRI studies of
atherosclerotic plaques in other vessels such as the aorta and

femoral artery [43], [44]. MR imaging of the coronary vessel
wall is still very challenging due to the small size and extensive
cardiac and respiratory motions.
In conclusion, good plaque-component segmentations with

similar agreement as inter-observer agreement were obtained
for carotid MRI data from two centers. We showed that when
no labeled same-center data is available extensive feature nor-
malization by means of adaptive histogram binning improves
results, and secondly that transfer-learning classifiers improve
results when a few labeled same-center examples are available.
These approaches yield results with similar accuracy to the ref-
erence of same-center training and significantly better than dif-
ferent-center training. The combination of feature normalization
and transfer learning can facilitate segmentation across scan-
ners. This can stimulate the wide implementation of automated
image analysis methods in large-scale multi-center studies and
in clinical practice.
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