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Automated In Vivo Segmentation of Carotid Plaque MRI
with Morphology-Enhanced Probability Maps

Fei Liu,'* Dongxiang Xu,' Marina S. Ferguson,’ Baocheng Chu,' Tobias Saam,'
Norihide Takaya," Thomas S. Hatsukami,” Chun Yuan,' and William S. Kerwin®

MRI is a promising noninvasive technique for characterizing
atherosclerotic plaque composition in vivo, with an end-goal of
assessing plaque vulnerability. Because of limitations arising
from acquisition time, achievable resolution, contrast-to-noise
ratio, patient motion, and the effects of blood flow, automati-
cally identifying plaque composition remains a challenging task
in vivo. In this article, a segmentation method using maximum a
posteriori probability Bayesian theory is presented that divides
axial, multi-contrast-weighted images into regions of necrotic
core, calcification, loose matrix, and fibrous tissue. Key advan-
tages of the method are that it utilizes morphologic information,
such as local wall thickness, and coupled active contours to
limit the impact from noise and artifacts associated with in vivo
imaging. In experiments involving 142 sets of multi-contrast
images from 26 subjects undergoing carotid endarterectomy,
segmented areas of each of these tissues per slice agreed with
histologically confirmed areas with correlations (R?) of 0.78,
0.83, 0.41, and 0.82, respectively. In comparison, manually iden-
tifying areas blinded to histology yielded correlations of 0.71,
0.76, 0.33, and 0.78, respectively. These results show that in vivo
automatic segmentation of carotid MRI is feasible and compa-
rable to or possibly more accurate than manual review for
quantifying plaque composition. Magn Reson Med 55:
659-668, 2006. Published 2006 Wiley-Liss, Inc.t
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Numerous studies have shown that MRI exhibits high
contrast for internal plaque features, but that combined
information from multiple contrast weightings is critical
for distinguishing all plaque components (1-6). Based on
these studies, desirable combinations of contrast weight-
ings and a set of image characteristics have emerged that
can be used to segment plaque into its subcomponents.
Manual segmentation using these characteristics has pro-
duced quantitative measurements of the relative volumes
of necrotic cores, calcification, loose matrix, and fibrous
tissue that correlate strongly with histologic assessments
(5).

Nevertheless, replacing subjective, manual segmenta-
tion with an automated segmentation alternative would
have several benefits. Aside from saving time in image
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review, automated segmentation would reduce the consid-
erable amount of training required to read these images
and the corresponding inter-rater variability. Additionally,
a viable, automated segmentation procedure would permit
various combinations of contrast weightings and image
characteristics to be objectively analyzed for accuracy in
plaque characterization. Such studies have been con-
ducted using automated segmentation of ex vivo endarter-
ectomy specimens (6,7), but these results are difficult to
translate to in vivo imaging, given the different constraints
regarding acquisition time, resolution, contrast-to-noise
ratio, and effects of blood flow. Recent efforts to demon-
strate in vivo segmentation of some plaque components
(8,9) are promising, but they have not yet been histologi-
cally validated.

The goal of this work was to develop a flexible, multi-
contrast plaque segmentation technique that is suitable for
objectively testing various approaches for measuring
plaque composition in vivo and to validate the method
with histology. Furthermore, the technique was developed
to mimic the highly successful procedure used in manual
review. Unlike other works (6,8,9) in which only the in-
tensity values in each contrast weighted image were con-
sidered, and (7) in which spatial information was used just
for minimizing pixel discontinuity, in this study, we con-
sider morphologic distribution information as an impor-
tant factor to make the final decision. We, therefore, refer
to this method as “Morphology-Enhanced Probabilistic
Plaque Segmentation” (MEPPS). We hypothesize that the
MEPPS approach increases the accuracy in the segmenta-
tion result.

MATERIALS AND METHODS
Study Population

A total of 31 consecutive patients scheduled for carotid
endarterectomy (CEA) were imaged on a GE Signa 1.5T MR
scanner to obtain images with T1 (TR = 800ms, TE =
11ms), T2 (TR = 3150ms, TE = 66ms), proton density (PD;
TR = 2770ms, TE = 9.3ms), time-of-flight (TOF; TR =
23ms, TE = 2.8ms), and contrast-enhanced (CE) T1 (TR =
800ms, TE = 11ms) weightings at 10 contiguous locations,
centered at the carotid bifurcation (10). CE-T1W images
were acquired approximately 10 min after injection of
0.1 mmol/kg of a gadolinium contrast agent (Omniscan,
Amersham Health, now part of GE Healthcare). In-plane
resolution was 0.63 mm, resulting in a pixel size of
0.31 mm after zero-filled interpolation, and the slice thick-
ness was 2.0 mm. All subjects gave informed consent and
the study was approved by the institutional review board.

At endarterectomy, the plaque was removed intact, for-
malin fixed, embedded en-Cbloc in paraffin, and serially
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FIG. 1. Distribution of plague components in the testing and training
data sets.

sectioned at 1.0 mm intervals in the common carotid and
at 0.5 mm intervals throughout the bulb and internal ca-
rotid. After staining with Hematoxylin and Eosin, histol-
ogy sections were matched to MR images using the bifur-
cation, lumen size and shape, and calcifications as land-
marks. The sections were digitized and regions of necrotic
core (including intraplaque hemorrhage), calcification,
and loose matrix, were outlined using an in-house pro-
gram. Loose matrix included all tissues that were loosely
woven, such as proteoglycan rich fibrous matrix, organiz-
ing thrombus, and granulomas. All un-outlined remaining
tissue was considered as dense fibrous matrix.

Ground Truth Generation

As in previous work (2,5), MR images were graded on a
subjective, 5-level image quality scale, where subjects
scoring below 3 had poorly defined vessel boundaries and
were eliminated from the study. Five subjects were ex-
cluded for poor image quality. From the remaining 26
subjects, a total of 142 locations (each physical location
consists of 5 images representing all 5 different contrast
weightings) were selected for the study, where the remain-
ing locations either extended beyond the limits of the
histologic specimen or had damaged histology. To gener-
ate ground truth for training and evaluation of the segmen-
tation algorithm, images from all 26 subjects were manu-
ally segmented based on established MRI criteria (5) and
knowledge of the histologic results. The review was con-
ducted by an expert radiologist (BC) in conjunction with
the histologist (MSF) using the manual drawing feature of
our quantitative MR analysis tool, CASCADE (11). As in
histology, 3 types of tissue—calcification, necrotic core,
and loose matrix—were identified, and the remainder was
assigned to fibrous tissue.

From this data set, 14 subjects (84 locations) were as-
signed to a training set and 12 subjects (58 locations) were

Multi Contrast |
MR Images

Pre-Processing

Probability Map
Generation

Probability Map
Segmentation

Manual Lumen and Wall
Registration
Coil Correction
Intensity Normalization

Estimate the
probability to be
each tissue

Tissue segmentation
by maximizing total
probability

Liu et al.

assigned to a testing data set. The latter 12 subjects were
selected for testing because these 12 had previously been
included in an evaluation of manual drawing (5). Algo-
rithm performance on these 12 subjects could thus be
directly compared to manual drawing. The average size of
each tissue type was confirmed to be similar between
training and testing groups (Fig. 1).

Segmentation Algorithm

The 84 locations in the training set were used to train the
MEPPS algorithm, which was integrated into CASCADE.
The MEPPS algorithm first determines the probability that
each pixel belongs to each of the 4 tissue types. Then,
competing active contours (12) are used to identify the
boundaries of high-probability regions for each tissue type.
The flowchart of major steps for assessing tissue composi-
tion in this study is shown in Fig. 2.

In designing the MEPPS algorithm, we further attempted
to mimic the thought process used by the radiologist in
manual review. First, manual review generally relies on
relative intensities (e.g., hyper, hypo, or isointense) to
describe image features. We, therefore, preprocess the im-
ages to establish a baseline iso-intensity for each image
and scale all pixel values relative to this baseline. Second,
reviewers use morphologic cues, such as local wall thick-
ness, in addition to intensity when classifying regions. We,
therefore, assign probability based on both intensity and
morphology. Finally, reviewers intuitively use the most
value-added contrast weightings in classifying regions, ig-
noring potentially confounding information from low-
value weightings. We, therefore, sought to identify the
most useful weightings for segmentation.

Pre-Processing

Major hurdles for in vivo plaque analysis compared to ex
vivo analysis are that in vivo images are subject to patient
motion, intensity inhomogeneities, and variable absolute
intensities depending on relative coil placement. In vivo
images must be registered, the intensity must be adjusted
relative to a uniform baseline, and the wall region must be
identified. Because of superior flow suppression from its
double inversion recovery preparation, T1W is generally
the best contrast weighting for identifying the lumen and
wall boundaries. Therefore, we standardized our approach
to trace the lumen and outer wall boundaries of the com-
mon or internal carotid arteries on only the T1W images.
These boundaries were traced manually.

Subsequently, images from the remaining 4 weightings
were registered to the TIW images to overcome patient
motion between acquisitions. Registration used the active
edge maps framework (13) to identify an in-plane shift that
best aligned edge pixels in the non-T1W images with the
lumen and wall contours drawn on the T1W image. Edge

Outlines
FIG. 2. Flowchart of MEPPS algorithm based

plaque tissue segmentation.
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FIG. 3. Preprocessing results (the displayed
images are 4 cm X 4 cm): (@) multi-contrast
images (left to right: T1, T2, PD, TOF, CET1)
demonstrating poor alignment of contours
in the original MR images; (b) resultant im-
ages after registration and intensity normal-
ization.

pixels were found using Canny edge detection (14). For
this image set, 87% of all images were properly registered
automatically. The remainder required additional manual
shifts to achieve the best alignment of contours with image
features. As a result of registration, proper alignment of
image pixels was restored. Additionally, the wall bound-
aries were mapped to the remaining contrast weightings,
precluding the need to draw boundaries on all contrast
weightings.

After registration, the effects of coil inhomogeneity were
eliminated by dividing each image by a smooth, estimated
sensitivity profile. We estimate the sensitivity profile
within a 4 cm X 4 cm region of interest aligned with the
center of the wall contour using an adaptive thresholding
technique (15) that simultaneously estimates the profile in
all image weightings assuming they are related by a scalar
multiple. In that method, under a Neumann boundary
condition, the profile u was estimated from observed sig-
nal g by solving the partial differential equation:

Alog(u) + Nlog(u) — log(g))
X exp( — (log(u) — log(g))*/c®) =0 [1]

After dividing by the estimated profile, intensity is uni-
form within the region.

To normalize the absolute intensity, each image weight-
ing is divided by its median intensity within the region.
This approach is based on the common practice of using
the adjacent sternocleidomastoid muscle or fibrous tissue
to identify an isointense reference for gauging signal in-
tensity in manual review (5). The median intensity was
chosen because, in general, fibro-muscular regions occupy
a large portion of the region and the remainder is more or
less equally divided between bright and dark regions.
Thus, the median intensity is highly likely to fall within a
fibro-muscular region, whereas the mean intensity is
highly dependent on the distribution between bright and
dark pixels. Additionally, this approach was tested for T1,
T2, PD, TOF, and CET1 weightings and, on average, the
mean ratio between sternocleidomastoid muscle intensity
and the median intensity in the 4 cm X 4 cm region was
found to be 1.07 with an SD of 0.11. Because the median
value is easily obtained without the need to detect a ref-
erence region and closely agrees with the sternocleidomas-
toid muscle intensity, in this study, we used it as the
baseline intensity. Examples of the effects of pre-process-
ing are shown in Fig. 3.
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Probability Map Generation

The core task of the MEPPS algorithm is to assign 4 prob-
abilities to each pixel. These probabilities represent the
likelihood that the pixel is necrotic core, calcification,
loose matrix, or fibrous tissue. We base this probability on
the pixel intensity in each contrast weighting—repre-
sented by the vector x—and on 2 morphologic factors: the
local wall thickness t and the distance of the pixel from the
lumen d. Thus, we determine the probability Pr (T | t,d x),
where Ti corresponds to one of the 4 tissue types (i.e., i =
1,2,3,4). The 2 distances t and d capture information about
the local plaque morphology, typically used in manual
review. For example, thin plaque regions are generally
fibrous and loose matrix is most commonly seen adjacent
to the lumen (16).

To estimate each probability, we can assume that the
intensity of a given tissue does not vary with position in
the plaque. For example, calcification has the same ap-
pearance whether it is adjacent to the lumen or deep
within the plaque. Thus, x is conditionally independent of
t and d, given T, This assumption allows us to cast the
probability as a naive-Bayesian network (17) (see Appen-
dix) and leads to the formula:

t,d,x) = 4p(t,d|Ti)P(X|Ti)Pr(Ti) .

> pltd

j=1

Pr(T;

T)p(x|T)Pr(T))

The 2 conditionally independent probability density func-
tions (PDFs) p(x | T) and p(t,d | T;), and the relative
frequency of each of the 4 tissue types Pr(T;), were esti-
mated from the training set. Factoring the probability in
this way greatly reduces the required size of the training
set and eliminates the need to estimate Pr(T; | t,d,x) di-
rectly, which makes it possible to combine more features
together given a limited data set (17).

To estimate the PDFs from the training set of 84 loca-
tions, the Parzen window method (18) was used. In this
method, a smooth PDF is estimated from a finite data set by
using a Gaussian kernel to blur each data point in space.
For p(x | T,), we found that a Gaussian kernel of width o =
0.07 and computation of the PDF on a 5-dimensional grid
with 10 intensity levels per contrast weighting produced a
smooth, self-consistent PDF. From this estimate, the PDF
at an arbitrary point in space is computed using linear
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interpolation over the grid. To estimate p(t,d | T;), the
Parzen window method was also used with ¢ = 0.09 and
11 levels in the range of 0 to 6 mm.

Contour Generation

Once the probabilities for each pixel are determined, the
final step is to classify each pixel as a given tissue. Al-
though the pixels could be classified based on the highest
probability alone, we utilize a competing contour formu-
lation to define the final regions. This additional step
provides two benefits. First, it provides the ability to easily
edit the regions by modifying the contours; and second, it
helps to eliminate isolated pixels and convoluted regions
attributable to noise.

The contours delineating each tissue region are deter-
mined using the active region method (12). Each of 4 con-
tours seeks 1 pre-assigned tissue. In order to produce reason-
able boundaries, contours are moving under a smoothness
constraint to maximize the total probability for the corre-
sponding tissue within it. Based on Gibbs-Markov random
field theory (19,20), using the level set method to represent
each contour, the energy functional is designed as:

FIG. 5. Segmentation results showing: (a)
automatic labeling result by Gaussian clas-
sifier; (b) probability map and region con-
tours based on intensity only, with necrotic
core in green, calcification in red, loose ma-
trix in blue, and fibrous tissue in gray; (c)
corresponding results including morpho-
logic information; (d) manual segmentation
result displayed on T2-weighted image; and
(e) corresponding histology specimen used
to guide contour placement in (d) (dark re-
gions within histology specimen are arti-
facts due to sectioning).
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FIG. 4. Probability distributions: (a) normalized in-
tensity of T1, T2, and contrast-enhanced (CE) T1-
weighted images for calcification (blue), necrotic
core (red), and loose matrix (green). Three iso-
80 surfaces of probability are shown for each tissue
type corresponding to probabilities of 0.3, 0.45,
and 0.6. (b) Probabilities for each tissue type given
plaque thickness and distance to the lumen (rang-
ing from low probability in black to high probability
in yellow).
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where ®; is the level set function and H(®) is the Heaviside
function. The first item sums probability within the con-
tours, the second one is a measure of total contour length,
and the third one constrains each pixel to belong to one
and only one contour. By using the level set method,
topology changes of the curves are handled automatically,
allowing individual contours to split and merge to form as
many distinct regions as necessary. More detailed numer-
ical implementation of the level set method can be found
in (12,21-24). Based on our experience, to avoid severe
shrinkage, A, was set relatively small to 0.01, and \, was
set to 2.25, which satisfies both region partition and nu-
merical stability.
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Validation

The MEPPS algorithm was validated using the 58 locations
from 12 subjects in the testing data set. The algorithm was
applied using all 5 contrast weightings and compared to
the histologically confirmed drawings. As an additional
comparison, we also performed segmentation using only
intensity information, by deleting the morphology-based
terms from the probability computation in Eq. [2]. This
allowed us to assess the contribution of morphology to
overall performance.

For validation, we used two metrics. First, we examined
the correlations between histologically measured areas of
plaque tissue and the estimates from MRI for each of the 58
locations in the testing group. This reflects the fundamen-
tal goal of quantifying plaque composition. Then, to eval-
uate the performance of the segmentation routine itself, we
assessed the pixel-wise accuracy of the segmentation re-
sults compared to the contours drawn manually with a
histologic reference.

For both assessments, we also compared the perfor-
mance of MEPPS to the results of manual review and a
common, maximum-likelihood Gaussian classifier. Man-
ual results were generated by another expert radiologist
(TS) blinded to the histologic results and served as a
benchmark for comparing the performance of the segmen-
tation algorithm to established manual performance (5).
The Gaussian classifier was obtained by fitting 5-dimen-
sional Gaussian distributions to the observed intensities
for each tissue class in the training set. In the testing set,
each pixel was assigned to the class that exhibited the
highest probability based on the Gaussian model. This
approach is similar to the minimum distance to means
classifier previously employed for ex vivo segmentation of
carotid plaque (6), with the exception that in the Gaussian
classifier, the distance to the mean is effectively weighted
by the SD of the distribution.

RESULTS
PDF Estimation

The results of probability density modeling are shown in
Fig. 4. For clearer visualization, we transformed the den-
sity function p(x | T;) into the true probability Pr(T; | x) (see
Appendix for relationship) and projected it onto a 3-di-
mensional subspace considering only 3 contrast weight-
ings T1-T2-CET1. This figure demonstrates generally good
separation of the 3 tissues shown in image intensity space.
High probabilities for calcification are located in the cor-
ner where intensity is low in each contrast weighting.
Loose matrix is located where T2 intensity is high and
CET1 is relatively higher than T1 intensity. Necrotic core
exhibits high probabilities where T1 intensity is high and
CET1 is isointense. In T2W images, the necrotic core ex-
hibits a broad distribution of intensities, indicating that
contrast weighting is of limited use for detecting necrotic
core. This supports the previous conclusion in (5) that,
depending on the amount and age of hemorrhage present
within the necrotic core, signal varies in T2W images.
Fibrous tissue, which is not shown, is diffusely distributed
among these regions.
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Tissue probabilities conditional on morphology Pr(T; |
t,d) are also shown in Fig. 4. The triangular region of
support reflects the fact that the distance to the lumen
cannot exceed the local thickness of the plaque. The high
probability (bright) area for necrotic core is located in the
central portion of high thickness regions, and fibrous tis-
sue is likely located near the lumen and wall boundaries.
The high probability area for loose matrix is relatively
close to the lumen in thick plaque regions. Calcification is
most common far from the lumen surface.

Segmentation Results—Qualitative

Figure 5 shows the results of segmentation of the example
of Fig. 3 based on probabilities. Results with and without
the additional morphologic information are displayed as
are the histology-guided manual drawings, the results of
Gaussian classification, and the corresponding histology
section. To visualize the pixel-wise probabilities in Figs.
5b and 5c, each pixel has been color coded to indicate the
tissue with the highest probability. The intensity repre-
sents the difference between the highest and second high-
est probabilities, essentially providing a confidence metric
in the classification. Also shown are the final contours
delineating the tissue regions.

From this example, three aspects are apparent. First,
intensity-based techniques (a and b) achieved similar re-
sults. Secondly, the benefits of morphologic information
are apparent by noting that without morphologic informa-
tion, the necrotic core is incorrectly divided into two dis-
joint regions and a region of necrotic core is incorrectly
identified in a thin-walled region near the top of the image.
Finally, the use of active contour methods to delineate the
final regions has successfully overcome the presence of
“holes” in the probability map that might otherwise have
been misclassified.

In Fig. 6, a poorly segmented example is shown for
comparison, which shows that residual misregistration
contributes to the remaining disagreement between
MEPPS and histology. In this case, the in-plane shift was
able to restore alignment of most features in the plaque,
but one area of calcification remained offset in the PD and
T1-weighted images. As a result, the calcification was
missed and the area was grouped into the adjacent necrotic
core. In other instances, small regions were missed due to
through-plane motion, which led to corresponding regions
being out of plane. This kind of mismatch may also result
in an overestimate or underestimate of the tissue area for
correctly detected tissues, such as the necrotic core in the
example.

Segmentation Results—Quantitative

For overall validation, we examined the correlation be-
tween automatic and histology-guided manual segmenta-
tion. The areas of each tissue type in each of the 58 test
locations were used for comparison, and the results are
compiled in Table 1. The overall performance of the non-
parametric intensity-based segmentation is generally sim-
ilar to the Gaussian classifier, with the exception that
identifying calcification is significantly improved with the
non-parametric technique. The benefits of using morphol-
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ogy in addition to intensity are apparent, given the higher
correlations for MEPPS compared to either of the results
based on intensity alone.

When comparing the results of MEPPS with histology
guided drawing, we found the correlation for necrotic core
and fibrous tissue to be relatively high. This is partially
due to the fact that typical areas of necrotic core and
fibrous tissue are larger than calcifications or loose matrix.
Nevertheless, calcification attained a high correlation be-
cause it is well-defined in histology and by MRI. The lower
correlation for loose matrix can be attributed to its small
size and the fact that it represents an aggregate of multiple
possible tissues that may have slightly different MRI prop-
erties. We observed that misclassification of loose matrix
was generally associated with fibrous tissue, which is not
surprising given that loose matrix is actually a sub-class of
fibrous tissue. Furthermore, if we combine the two into a
combined fibrous group, we achieve a correlation of 0.85
with histology.

The classification accuracies for all pixels in the testing
set are tabulated in Table 2 in terms of sensitivity and
specificity. Values for automated and blinded manual seg-
mentation are similar, with both exhibiting high specific-
ities for all tissue types and high sensitivity for fibrous
tissue. Sensitivities for necrotic core and calcifications are
good, whereas loose matrix has relatively low sensitivity.
The somewhat lower sensitivities can be attributed in large
part to this metric being pessimistic for small regions, such
as most calcifications and loose matrix. This observation is
illustrated by the fact that the segmentation result in Fig. 5

Table 1
Correlations (R?) of Histology-Guided Measurements (total area

Liu et al.

FIG. 6. An example of poor segmentation
results for calcification: (a)-(e) histology
guided manual drawing displayed on T1, T2,
PD, TOF, and CET1, respectively; (f) MEPPS
segmentation result in which a calcified re-
gion (arrow in b) was missed.

exhibits excellent qualitative agreement with the histol-
ogy-guided result. However, in this example, the sensitiv-
ity for detecting calcified pixels is only 0.37 and that for
loose matrix is only 0.73. This discrepancy is due to the
fact that for small regions, slight differences in the location
of contours can lead to a large percentage of pixels that do
not overlap.

Bland-Altman plots comparing MEPPS and histology for
each tissue are provided in Fig. 7. These illustrate the
generally good agreement between MEPPS and histology.
No significant biases were detected. Additionally, the error
appears unrelated to the size of the region and no size-
dependent biases are apparent.

Optimal Contrast Weightings

To explore the performance of the MEPPS algorithm when
fewer than 5 contrast weightings were available, we per-
formed segmentation with all combinations of 4, 3, 2, and
1 contrast weightings. As a performance metric, we used
the sum of the correlations for all 4 tissue types and ranked
the preferred combinations from highest to lowest. Addi-
tionally, we utilized the training data in this evaluation to
incorporate more locations. Because of this, the absolute
correlations may be somewhat elevated, but the relative
merits of different weightings should be accurately repre-
sented. Fig. 8 shows the relative number of appearances
each contrast weighting made in the top performing con-
trast combinations according to the sum of correlation R?
for 4 types of tissues. For example, in the top 10 combina-
tions, T1 appeared 9 times, CET1 appeared 8 times, T2 and

Table 2
per location) with Manual Segmentation, Gaussian Segmentation, Y .
Intensity-Based Automatic Segmentation, and MEPPS Pixel-Wise Segmentation Accuracy
Intensity- MEPPS Manual
Tissue Manual  Gaussian =g  MEPPS Sensitivity Specificity Sensitivity Specificity
Necrotic core 0.71 0.65 0.61 0.78 Necrotic core 0.75 0.92 0.64 0.90
Calcification 0.76 0.64 0.78 0.83 Calcification 0.65 0.98 0.77 0.97
Loose matrix 0.33 0.28 0.32 0.41 Loose matrix 0.51 0.97 0.37 0.99
Fibrous tissue 0.78 0.71 0.69 0.82 Fibrous tissue 0.88 0.78 0.84 0.68
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TOF each appeared 7 times, and PD appeared only 6 times.
This figure illustrates that T1 is the most important con-
trast weighting for proper segmentation and PD is rela-
tively unimportant. The contributions of T2, TOF, and
CET1 appear similar.

The best performing combinations for 4, 3, 2, and 1
contrast weightings are listed in Table 3. Note that no
combination outperforms the use of all 5 weightings, al-
though the performance remains quite good even when
only 3 weightings are available. As expected, the perfor-
mance with only 1 contrast weighting is poor. Table 4
shows for comparison the best performing combinations in
the absence of CET1 images. This result suggests that with-
out the use of a contrast agent, T2-weighted images fill the
role of CET1 images and give generally similar, although
slightly diminished, performance.

DISCUSSION

This study establishes that accurate division of atheroscle-
rotic plaque into 4 constitutive components can be accom-
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plished with in vivo MRI and automated segmentation
with the MEPPS algorithm. Division of the plaque into 4
components was based on the 4 principal components
investigated by Saam et al. (5), in which the ability to use
MRI to comprehensively quantify plaque composition was
validated with histology. In that investigation, intraplaque
hemorrhage was also measured as a sub-component of the
necrotic core. Here, necrotic cores represented both hem-
orrhagic cores and lipid-rich cores without hemorrhage. In
previous studies, hemorrhagic and lipid-rich necrotic
cores have been grouped under the term “soft plaque com-
ponents” (2). Because of the limited size of the data set, we
chose not to segment intraplaque hemorrhage as a distinct
entity. Nevertheless, extension of the algorithm to identify
intraplaque hemorrhage remains a future goal.

Among the detected tissues, loose matrix got the lowest
correlation with histology guided segmentation. Neverthe-
less, the correlation coefficient (R) was 0.64 (R* = 0.41),
which is close to the value of 0.7 reported for manual
outlining (5). The difficulty in identifying loose matrix by
any means is due in part to the fact that regions classified
as loose matrix by MRI are not well-defined histologically.
By histology, loose matrix includes all tissues that are
loosely woven, such as proteoglycan-rich fibrous matrix,
organizing thrombus, and granulomas. Also, as mentioned
in (5), “Loose matrix areas were generally small in size,
and their often juxtaluminal location complicates differ-
entiation from flow artifacts.” To address the poorer per-
formance for loose matrix, we investigated grouping it
with fibrous tissue to form 3 basic plaque groups: fibrous,
necrotic, and calcified. With this definition, MEPPS exhib-
ited values of R* near 0.8, or R near 0.9, for all plaque
components.

This approach for segmenting carotid plaque MRI has
several advantages particular to this application. First, the
use of morphologic information in the segmentation pro-
cedure is a powerful addition to intensity information,
which reflects the observed spatial distribution of plaque
components. Furthermore, use of a Bayesian network to
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Table 3

List of Best Overall Performance (R?) with Combinations of 5-1 Contrast Weightings
Best combination of Necrotic e Loose Fibrous .

o Calcification A ) Overall

contrast weightings core matrix tissue
T1-T2-PD-TOF-CET1 0.85 0.86 0.59 0.87 3.17
T1-T2-TOF-CET1 0.82 0.84 0.61 0.86 3.13
T1-TOF-CETA 0.81 0.84 0.58 0.83 3.06
T1-CETH 0.81 0.82 0.50 0.84 2.97
T 0.83 0.55 0.17 0.81 2.36

*Overall performance score based on sum of individual tissue correlations.

implement morphology-based segmentation has its own
advantages. Such naive-Bayesian classifiers have outper-
formed many more sophisticated classifiers, especially
where the features are not strongly correlated (25). Most
notably, using this framework reduces the required size of
the training data set, as illustrated by the following sce-
nario. Suppose a given pixel should be classified as calci-
fication. In order for this to occur, a general classifier
would have to have encountered a pixel in the training set
with a similar intensity in a similar relative location. In the
naive-Bayesian classifier, the training set would only have
to contain a pixel with a similar intensity and any other
pixel in a similar relative location. Clearly, in a limited
data set, the latter scenario is much more likely.

Additionally, this approach has advantages over previ-
ously proposed segmentation methods based on clustering
(7,8). In clustering methods, the exact number of regions
must be specified a priori. Also, the possibility of two
regions of the same component with different intensity
characteristics due to different mixtures of subcomponents
is not well handled. In this case, the two regions will
typically be assigned to different clusters. Thus, clustering
methods generally require the number of clusters to be
over-specified and then rely on region merging to generate
the final result. In Bayesian approaches, such as MEPPS,
on the other hand, the ranges of intensities are modeled
statistically. Also, although MEPPS assumes 4 tissue types
may be present, the ultimate number of regions and tissue
types at any one location is arbitrary.

Another advantage of this approach is the use of non-
parametric PDF estimates as opposed, for example, to as-
suming a Gaussian distribution. This allows the high-prob-
ability region to distribute in space in any shape, deter-
mined only by the training data. One implication is that
the method is fairly robust to misregistration and motion
artifacts in the image. The PDF is trained on data contain-
ing these artifacts and, thus, learns to recognize them. For
example, high probability for calcification may be assigned
as long as the majority of contrast weightings exhibit a

Table 4

dark pixel. In the PDF, such rules would be represented by
extensions of high-probability regions that are not easily
modeled parametrically. We attribute the relatively worse
performance of the Gaussian classifier in detecting calcifi-
cations to this effect. Generally small in size, calcifications
are among the most sensitive to residual misregistration
€ITOTS.

A final advantage of this approach is the use of active
contours to perform the final region classification. As dem-
onstrated by example, the active contours help overcome
segmentation errors caused by isolated pixels with low
confidence in the probability estimates. Although not ad-
dressed in this study, the use of contours to represent the
regions may also facilitate manual editing of the results.
While all of these advantages arise from specific chal-
lenges posed by carotid MRI, other segmentation problems
could, nevertheless, benefit from some of these same ap-
proaches.

Comparison of the performance of segmentation with
different combinations of contrast weightings also pro-
vided an objective means of comparing the relative merits
of different weightings. Notably, PD was found to provide
little information for segmentation and might be elimi-
nated from the protocol to save time. Also, TOF imaging
showed surprising importance, possibly because it re-
duces the likelihood that inclusion of a small region of the
lumen would be mislabeled as calcification. In TOF, the
lumen is characteristically bright. The comparison also
supports the previous observation by Wasserman et al. (26)
that T2 and CET1 weightings provide largely similar in-
formation on plaque composition. In fact, the slightly bet-
ter performance of the algorithm when CET1 was used
instead of T2 supports their assertion that CET1 exhibits
better signal-to-noise performance. Overall, these results
suggest that a rapid protocol generating only T1, CET1,
and possibly TOF weightings might go a long way toward
plaque characterization. Additionally, use of more con-
trast weightings can at times lead to worse performance

List of Best Overall Performance (R?) with Combinations of 4-1 Contrast Weightings, Excluding CET1

Best combination of Necrotic e Loose Fibrous .
o Calcification ] ) Overall

contrast weightings core matrix tissue

T1_T2_PD_TOF 0.84 0.87 0.53 0.86 3.10

T1_T2_TOF 0.83 0.82 0.54 0.86 3.05

T1_T2 0.81 0.78 0.49 0.84 2.92

T1 0.83 0.55 0.17 0.81 2.36

*Overall performance score based on sum of individual tissue correlations.
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because the additional weightings may introduce more
image artifacts or other sources of noise.

One limitation of this technique is that it represents only
one of several steps in carotid plaque analysis. We break
the analysis into 4 basic steps: lumen boundary detection,
outer wall boundary detection, multi-contrast registration,
and finally, plaque segmentation. This investigation pri-
marily addresses the final step of plaque segmentation.
The remaining steps demand new and improved auto-
mated techniques as well. Nevertheless, we consider
plaque segmentation as the most critical step for automa-
tion. Previous work has been directed at lumen detection
(27), wall detection (7), and registration (13). Additionally,
manually tracing internal plaque composition is consider-
ably more tedious and less reproducible than tracing the
boundaries (28). Although manual oversight and input
will be required until all aspects of plaque analysis can be
automated, the use of MEPPS for plaque segmentation can
considerably increase the speed of reviewers performing
carotid plaque analysis.

CONCLUSIONS

This study shows that automatic segmentation of in vivo
carotid MRI—a long-time goal—is achievable. Segmented
regions of necrotic core, calcification, loose matrix, and
fibrous tissue were identified, with performance metrics
similar to and generally slightly better than corresponding
manual review. Thus, automatic segmentation can be im-
plemented as an aid to measuring plaque composition by
MRI. These measurements can in turn be used to investi-
gate the association of plaque features with plaque vulner-
ability or the changes in plaque composition over time,
due to therapy.

APPENDIX

The derivation of these methods makes frequent use of
Bayes’ theorem for conditional probabilities. Specifically,
the following relationships are used:

1. By using intensity information x itself, the post-prob-

ability, is
porp - POTIPIT) _ pGiTOPRCT)
p(x) 4
2 pT)Pr(T))
j=1

2. By using morphologic intensity, specifically (t, d)
itself, the post-probability is

p(t,d|T,)Pr(T) _ p(t,d| T)Pr(T)
pltd 4
2, p(t.dT)Px(T)

j=1

Pr(Tit,d) = [A2]

3. Combining intensity information and morphologic
information together, the final post-probability is

667
_ p(t.dx|T)Px(T)
PI‘(Ti|t,d,X) = W
_ pdT)PT) _ pedTyptd TPHT)
4 4
> p(t.dX|T)PK(T) >, p(x|T)p(t.d|T)Px(T)
j=1 j=1
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